
Follow the Rules Regarding Concurrency Management 1
ID: 332-BSI | Version: 10 | Date: 11/14/08 5:03:15 PM

Follow the Rules Regarding Concurrency Management
William L. Fithen, Software Engineering Institute [vita2]

Copyright © 2005 Carnegie Mellon University

2005-10-03 L4 / D/P3

Failure to follow proper concurrency management protocols can produce serious vulnerabilities. Concurrent
access to shared resources without using appropriate concurrency management mechanisms produces hard-
to-find vulnerabilities. Many "functions" that are necessary to use can introduce "time of check/time of use"
vulnerabilities.

Description
When multiple threads of control attempt to share the same resource but to not follow the appropriate
concurrency protection protocol, then any of the following are possible:

• Deadlock: one or more thread may become permanently blocked [Johansson 054].

• Loss of information: saved information is overwritten by another thread [Gong 035, Pugh 996, Manson

017, Manson 058].

• Loss of integrity of information: information written by multiple threads may be arbitrarily interlaced

[Gong 039, Pugh 9910, Manson 0111, Manson 0512].

• Loss of liveness: imbalance in access to shared resources by competing threads can cause performance

problems [Gong 0313, Pugh 9914, Manson 0115, Manson 0516].

Any of these can have security implications, sometimes manifest in apparent logic errors (decisions made
based on corrupt data).

Competing "Systems" (Time of Check/Time of Use)
This is the most frequently encountered subclass of concurrency-related vulnerabilities. Many of the defects
that produce these vulnerabilities are unavoidable due to limitations of the execution environment (i.e., the
absence of proper concurrency control mechanisms). A common mitigation tactic is to minimize the time
interval between check and use, but a more effective tactic is use a "check, use, check" pattern that can often
detect concurrency violations, though not prevent them.

Applicable Context
All of the following must be true:

• Multiple "systems" must be operating concurrently.

• At least two of those systems must use a shared resource (e.g., file, device, database table row).

• At least one of those systems must use the shared resource in any of the following ways:

• Without using any concurrency control mechanism. This includes the situation where no such
mechanism exists, such a conventional UNIX filesystems, causing corruption or confusion.

• Using the right concurrency control mechanism incorrectly. This includes situations like not using
a consistent resource locking order across all systems (e.g., in databases), causing deadlocks.

• Using the wrong concurrency control mechanism (even if it used correctly). This includes
situations where a give resource may support multiple concurrency control mechanisms that are
independent of one another (e.g., UNIX lockf() and flock()), causing corruption or confusion.

These defects are frequently referred to as time of check/time of use defects because APIs providing access
to the resource neither provide any concurrency control operations nor perform any implicit concurrency

2. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/320-BSI.html (Fithen, William L.)

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/320-BSI.html
http://buildsecurityin.us-cert.gov/bsi/1084-BSI.html
#dsy332-BSI_refs
#dsy332-BSI_refs
#dsy332-BSI_refs
#dsy332-BSI_refs
#dsy332-BSI_refs
#dsy332-BSI_refs
#dsy332-BSI_refs
#dsy332-BSI_refs
#dsy332-BSI_refs
#dsy332-BSI_refs
#dsy332-BSI_refs
#dsy332-BSI_refs
#dsy332-BSI_refs
#dsy332-BSI_refs

Follow the Rules Regarding Concurrency Management 2
ID: 332-BSI | Version: 10 | Date: 11/14/08 5:03:15 PM

control. In this case, a particular condition (e.g., availability of resource, resource attributes) is checked at
one point in time and later program actions are based on the result of that check, but the condition could
change at any time since no concurrency control mechanism guarantees the condition did not change.

Competing Threads within a "System" (Races)
The second largest class of concurrency-related vulnerabilities is generated by defects in the sharing
of resources such as memory, devices, or files. The defect may be a design error associated with the
concurrency control mechanisms or with an implementation error such as not correctly using those
mechanisms. Caching errors can be considered a member of this class.

Strictly speaking, signal handling defects are not concurrency defects. Signal handlers are invoked
preemptively in the main thread of the process. Therefore, signal handlers are not really concurrently
executed. However, from the programmer's viewpoint, they mostly feel like concurrent execution, so we
classify them here, at least for now.

Applicable Context
All of the following must be true:

• A "system" must have multiple concurrently operating threads of control.

• Two or more of those threads must use a shared data object, device, or other resource.

• At least one thread must use the shared resource without using the appropriate concurrency control
mechanism correctly (or at all).

Impacts Being Mitigated
• Impact #1:

• Minimally: None.

• Maximally: Deadlock: one or more threads may become permanently blocked.

• Impact #2:

• Minimally: None.

• Maximally: Loss of information: saved information is overwritten by another thread.

• Impact #3:

• Minimally: None.

• Maximally: Loss of integrity of information: information written by multiple threads may be
arbitrarily interlaced.

• Impact #4:

• Minimally: None.

• Maximally: Loss of liveness: imbalance in access to shared resources by competing threads can
cause performance problems.

Security Policies to be Preserved
• Policy #1

• Threads must not deadlock.

• Policy #2

• Information must not be lost.

• Policy #3

• Information must not be corrupted.

• Policy #4

Follow the Rules Regarding Concurrency Management 3
ID: 332-BSI | Version: 10 | Date: 11/14/08 5:03:15 PM

• Acceptable performance must be maintained.

How to Recognize this Defect
• Concurrency defects are extremely difficult to recognize. There is no general purpose approach to

finding them.

Mitigation Advice

To Engineers:
• Efficacy: INFINITE

• The appropriate concurrency control mechanism must be used in the conventional way (assuming there
is one).

To Engineers:
• Efficacy: LOW

• Where no concurrency control mechanism is available, seek to minimize the interval between the time
of check and the time of use. Technically this does not correct the problem, but it can make the error
much more difficult to exploit.

References

[Bishop 96] Bishop, Matt & Dilger, Mike. "Checking for Race Conditions in File Accesses."
Computing Systems 9, 2 (1996): 131-152.

[Gong 03] Gong, Li; Ellison, Gary; & Dageforde, Mary. Inside Java 2 Platform Security:
Architecture, API Design, and Implementation (2nd Edition). Boston, MA:
Addison-Wesley, 2003.

[Johansson 05] Johansson, Olof& Torvalds, Linus. Fix possible futex
mmap_sem deadlock. http://linux.bkbits.net:8080/linux-2.6/

cset@421cfc11zFsK9gxvSJ2t__FCmuUd3Q (2005). What is a futex18 anyway?

[Manson 01] Manson, J. & Pugh, W. "Core semantics of multithreaded Java," 29-38.
Proceedings of the 2001 Joint ACM-ISCOPE Conference on Java Grande. Palo
Alto, California, USA, 2001. New York, NY: ACM Press, 2001. DOI= http://

doi.acm.org/10.1145/376656.37680619.

[Manson 05] Manson, J.; Pugh, W.; & Adve, S. V. "The Java memory model,"
378-391. Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. Long Beach, California, USA,
January 12-14, 2005. New York, NY: ACM Press, 2005. DOI= http://
doi.acm.org/10.1145/1040305.1040336.

[Pugh 99] Pugh, W. "Fixing the Java memory model," 89-98. Proceedings of the
ACM 1999 Conference on Java Grande. San Francisco, California,
USA, June 12-14, 1999. New York, NY: ACM Press, 1999. DOI= http://

doi.acm.org/10.1145/304065.30410621.

[Viega 02] Viega, John & McGraw, Gary. Building Secure Software: How to Avoid Security
Problems the Right Way. Boston, MA: Addison-Wesley, 2002.

http://linux.bkbits.net:8080/linux-2.6/cset@421cfc11zFsK9gxvSJ2t__FCmuUd3Q
http://linux.bkbits.net:8080/linux-2.6/cset@421cfc11zFsK9gxvSJ2t__FCmuUd3Q
http://ds9a.nl/futex-manpages/futex4.html
http://doi.acm.org/10.1145/376656.376806
http://doi.acm.org/10.1145/376656.376806
http://doi.acm.org/10.1145/1040305.1040336
http://doi.acm.org/10.1145/1040305.1040336
http://doi.acm.org/10.1145/304065.304106
http://doi.acm.org/10.1145/304065.304106

Follow the Rules Regarding Concurrency Management 4
ID: 332-BSI | Version: 10 | Date: 11/14/08 5:03:15 PM

[VU#132110] Rafail, Jason. Vulnerability Note VU#132110: Apache HTTP Server vulnerable
to DoS race condition in the handling of short-lived connections. http://
www.kb.cert.org/vuls/id/132110 (2004).

Carnegie Mellon Copyright
Copyright © Carnegie Mellon University 2005-2010.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests

for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

1. mailto:permission@sei.cmu.edu

http://www.kb.cert.org/vuls/id/132110
http://www.kb.cert.org/vuls/id/132110
mailto:permission@sei.cmu.edu

